Ice formation on the surface of greens is never good and my
collective experience with ice at Greywolf has not been positive. As I reported previously, we have a thin layer
of ice that has formed on our untarped greens (8 of our 19 greens). The ice layer formed as the result of two rain
events in late November and early December.
The ice varies between 3mm and 6mm in thickness. Although not very thick, I believed ice
covers most of the surfaces on our untarped greens. I believed this because after each rain event
we went out and dug snow pits on the greens in order to examine the turf. We also pulled out a few turf samples to
measure the thickness of the ice (See my
last two posts).
On December 7th we undertook an experiment to see
if we could clear the ice from the surface of the 10th green. The
goal was to clear the ice and not cause any damage to the turf. Another goal was to see if our sampling
program was correct in predicting the amount of ice coverage on the untarped
greens.
Assistant Superintendent Colin Matheson starting snow removal |
The advantage of experimenting on the 10th green is that it is right next to the Turfcare Facility and clearing a path to the green was not difficult. On December 6th we cleared a path in preparation for snow removal on the green. On the morning of December 7th, Assistant Superintendent Colin Matheson and I began removing the snow from the green with walk behind snow blowers. The snow depth averaged 13” and removal took approximately three hours.
Towing Aerator to 10 Green |
In terms of ice removal the experiment was not
successful. During aeration small chunks of turf were
removed from the green. After aerating
some spots multiple times, we discovered that only 15 to 20% of the surface was
exposed. Also in the fifteen minutes the aerator was in
operation over 10% of the aeration tines (7
of 60) had fallen out due to strain on the mounting system. The aerator was tested to the limits of its
design. Because of our limited success
in fracturing the ice, the amount of turf that was being removed and the strain
on the aerator we stopped the experiment.
The results after three aeration passes - Bottom of photo no aeration - Top three passes |
Another observation we made after clearing the ice was that
the thin layer of ice strongly adhered to the surface of the green. There are several reasons for this. First, the green surfaces had aeration holes
left over from late season aeration.
When the ice formed on the surface, the ice essentially installed
“footings” or “pilings” into the aeration holes in the root-zone of the greens
helping the ice to adhere to the surface.
Also as a sound agronomic practice, the greens had been allowed to grow
out in preparation for winter. The
height of cut had continually been raised during September and October. The longer leaf blades helped the ice bond to
the surface of the greens (An analogy
would be if you had to remove ice off of your head – it would be easier to remove
it off a bald scalp rather than long hair?
Sorry to all the mullets out there). The type of ice also influenced
removal. Although the ice we have is
thin, it is clear and dense.
So what can be done to mitigate the damage at this time of
year? Not much. I believe our best course of action is to
remove the ice as early as we can in the spring. We are a month and a half into a five and
half month winter season. There is the
potential for more rain. My hope lies in
the fact that the ice is thin and there are about 10% of the leaf tips poking
through the surface. After speaking with
Jim Ross at the PTRC we are hoping the ice fractures enough from natural causes
and there is enough gas exchange along the surface of the exposed leaf tips to sustain
the winter. I am also hopeful these are
our eight healthier greens and that they went into winter in a hardier state.
No comments:
Post a Comment